Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cluster exchange reactivity of [2Fe-2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins.

Identifieur interne : 000280 ( Main/Exploration ); précédent : 000279; suivant : 000281

Cluster exchange reactivity of [2Fe-2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins.

Auteurs : Sambuddha Sen [États-Unis] ; Brian Rao ; Christine Wachnowsky ; J A Cowan

Source :

RBID : pubmed:30137089

Descripteurs français

English descriptors

Abstract

The [2Fe-2S] cluster-bridged complex of BOLA3 with GLRX5 has been implicated in cluster trafficking, but cluster exchange involving this heterocomplex has not been reported. Herein we describe an investigation of the cluster exchange reactivity of holo BOLA3-GLRX complexes using two different monothiol glutaredoxins, H.s. GLRX5 and S.c. Grx3, which share significant identity. We observe that a 1 : 1 mixture of apo BOLA3 and glutaredoxin protein is able to accept a cluster from donors such as ISCU and a [2Fe-2S](GS)4 complex, with preferential formation of the cluster-bridged heterodimer over the plausible holo homodimeric glutaredoxin. Holo BOLA3-GLRX5 transfers clusters to apo acceptors at rates comparable to other Fe-S cluster trafficking proteins. Isothermal titration calorimetry experiments with apo proteins demonstrated a strong binding of BOLA3 with both GLRX5 and Grx3, while binding with an alternative mitochondrial partner, NFU1, was weak. Cluster exchange and calorimetry experiments resulted in a very similar behavior for yeast Grx3 (cytosolic) and human GLRX5 (mitochondrial), indicating conservation across the monothiol glutaredoxin family for interactions with BOLA3 and supporting a functional role for the BOLA3-GLRX5 heterocomplex relative to the previously proposed BOLA3-NFU1 interaction. The results also demonstrate rapid formation of the heterocomplexed holo cluster via delivery from a glutathione-complexed cluster, again indicative of the physiological relevance of the [2Fe-2S](GS)4 complex in the cellular labile iron pool.

DOI: 10.1039/c8mt00128f
PubMed: 30137089
PubMed Central: PMC6146392


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cluster exchange reactivity of [2Fe-2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins.</title>
<author>
<name sortKey="Sen, Sambuddha" sort="Sen, Sambuddha" uniqKey="Sen S" first="Sambuddha" last="Sen">Sambuddha Sen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210</wicri:regionArea>
<wicri:noRegion>Ohio 43210</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rao, Brian" sort="Rao, Brian" uniqKey="Rao B" first="Brian" last="Rao">Brian Rao</name>
</author>
<author>
<name sortKey="Wachnowsky, Christine" sort="Wachnowsky, Christine" uniqKey="Wachnowsky C" first="Christine" last="Wachnowsky">Christine Wachnowsky</name>
</author>
<author>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30137089</idno>
<idno type="pmid">30137089</idno>
<idno type="doi">10.1039/c8mt00128f</idno>
<idno type="pmc">PMC6146392</idno>
<idno type="wicri:Area/Main/Corpus">000220</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000220</idno>
<idno type="wicri:Area/Main/Curation">000220</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000220</idno>
<idno type="wicri:Area/Main/Exploration">000220</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cluster exchange reactivity of [2Fe-2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins.</title>
<author>
<name sortKey="Sen, Sambuddha" sort="Sen, Sambuddha" uniqKey="Sen S" first="Sambuddha" last="Sen">Sambuddha Sen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210</wicri:regionArea>
<wicri:noRegion>Ohio 43210</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rao, Brian" sort="Rao, Brian" uniqKey="Rao B" first="Brian" last="Rao">Brian Rao</name>
</author>
<author>
<name sortKey="Wachnowsky, Christine" sort="Wachnowsky, Christine" uniqKey="Wachnowsky C" first="Christine" last="Wachnowsky">Christine Wachnowsky</name>
</author>
<author>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
</author>
</analytic>
<series>
<title level="j">Metallomics : integrated biometal science</title>
<idno type="eISSN">1756-591X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier Proteins (metabolism)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Mitochondrial Proteins (MeSH)</term>
<term>Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Protéines (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Protéines mitochondriales (MeSH)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Iron-Sulfur Proteins</term>
<term>Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Protéines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Mitochondrial Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Protéines mitochondriales</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The [2Fe-2S] cluster-bridged complex of BOLA3 with GLRX5 has been implicated in cluster trafficking, but cluster exchange involving this heterocomplex has not been reported. Herein we describe an investigation of the cluster exchange reactivity of holo BOLA3-GLRX complexes using two different monothiol glutaredoxins, H.s. GLRX5 and S.c. Grx3, which share significant identity. We observe that a 1 : 1 mixture of apo BOLA3 and glutaredoxin protein is able to accept a cluster from donors such as ISCU and a [2Fe-2S](GS)4 complex, with preferential formation of the cluster-bridged heterodimer over the plausible holo homodimeric glutaredoxin. Holo BOLA3-GLRX5 transfers clusters to apo acceptors at rates comparable to other Fe-S cluster trafficking proteins. Isothermal titration calorimetry experiments with apo proteins demonstrated a strong binding of BOLA3 with both GLRX5 and Grx3, while binding with an alternative mitochondrial partner, NFU1, was weak. Cluster exchange and calorimetry experiments resulted in a very similar behavior for yeast Grx3 (cytosolic) and human GLRX5 (mitochondrial), indicating conservation across the monothiol glutaredoxin family for interactions with BOLA3 and supporting a functional role for the BOLA3-GLRX5 heterocomplex relative to the previously proposed BOLA3-NFU1 interaction. The results also demonstrate rapid formation of the heterocomplexed holo cluster via delivery from a glutathione-complexed cluster, again indicative of the physiological relevance of the [2Fe-2S](GS)4 complex in the cellular labile iron pool.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30137089</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>07</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1756-591X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2018</Year>
<Month>09</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Metallomics : integrated biometal science</Title>
<ISOAbbreviation>Metallomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Cluster exchange reactivity of [2Fe-2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins.</ArticleTitle>
<Pagination>
<MedlinePgn>1282-1290</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c8mt00128f</ELocationID>
<Abstract>
<AbstractText>The [2Fe-2S] cluster-bridged complex of BOLA3 with GLRX5 has been implicated in cluster trafficking, but cluster exchange involving this heterocomplex has not been reported. Herein we describe an investigation of the cluster exchange reactivity of holo BOLA3-GLRX complexes using two different monothiol glutaredoxins, H.s. GLRX5 and S.c. Grx3, which share significant identity. We observe that a 1 : 1 mixture of apo BOLA3 and glutaredoxin protein is able to accept a cluster from donors such as ISCU and a [2Fe-2S](GS)4 complex, with preferential formation of the cluster-bridged heterodimer over the plausible holo homodimeric glutaredoxin. Holo BOLA3-GLRX5 transfers clusters to apo acceptors at rates comparable to other Fe-S cluster trafficking proteins. Isothermal titration calorimetry experiments with apo proteins demonstrated a strong binding of BOLA3 with both GLRX5 and Grx3, while binding with an alternative mitochondrial partner, NFU1, was weak. Cluster exchange and calorimetry experiments resulted in a very similar behavior for yeast Grx3 (cytosolic) and human GLRX5 (mitochondrial), indicating conservation across the monothiol glutaredoxin family for interactions with BOLA3 and supporting a functional role for the BOLA3-GLRX5 heterocomplex relative to the previously proposed BOLA3-NFU1 interaction. The results also demonstrate rapid formation of the heterocomplexed holo cluster via delivery from a glutathione-complexed cluster, again indicative of the physiological relevance of the [2Fe-2S](GS)4 complex in the cellular labile iron pool.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sen</LastName>
<ForeName>Sambuddha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rao</LastName>
<ForeName>Brian</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wachnowsky</LastName>
<ForeName>Christine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cowan</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AI072443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Metallomics</MedlineTA>
<NlmUniqueID>101478346</NlmUniqueID>
<ISSNLinking>1756-5901</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C533597">BolA3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516011">GLRX5 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C426067">NFU1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30137089</ArticleId>
<ArticleId IdType="doi">10.1039/c8mt00128f</ArticleId>
<ArticleId IdType="pmc">PMC6146392</ArticleId>
<ArticleId IdType="mid">NIHMS986535</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3088-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23208207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 17;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27532772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Oct;11(10):772-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26302480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Aug 29;289(35):24588-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25012657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2016 Dec 7;8(12):1283-1293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27878189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1996 Jun 1;237(2):260-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8660575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jul 23;35(29):9488-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Sep 24;52(38):6633-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9762-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12886008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Feb 28;51(8):1687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22309771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Oct 18;50(41):8957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Jul 31;124(30):8774-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12137512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2016 Dec;590(24):4531-4540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27859051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2018 Mar;23(2):241-252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29264659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 May 1;371(Pt 3):823-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Jul 4;134(26):10745-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22687047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 May 15;290(20):12689-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25771538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2016 Oct;21(7):825-836</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27538573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 10;279(50):51923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15456753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2018 Jul;184:100-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29689452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2016 Oct;21(7):887-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27590019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Aug 11;48(31):7512-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19722697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Dec 30;137(51):16133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26613676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Oct 7;89(4):486-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21944046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 17;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27532773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2017 Oct;22(7):1075-1087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28836015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Jan 29;41(4):1195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11802718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2016 Apr 1;15(4):1308-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26889782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Oct 21;291(43):22344-22356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27519415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Gen Subj. 2017 Aug;1861(8):2119-2131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28483642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2007 Aug 14;(30):3192-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17653385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23292141</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
<name sortKey="Rao, Brian" sort="Rao, Brian" uniqKey="Rao B" first="Brian" last="Rao">Brian Rao</name>
<name sortKey="Wachnowsky, Christine" sort="Wachnowsky, Christine" uniqKey="Wachnowsky C" first="Christine" last="Wachnowsky">Christine Wachnowsky</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Sen, Sambuddha" sort="Sen, Sambuddha" uniqKey="Sen S" first="Sambuddha" last="Sen">Sambuddha Sen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000280 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000280 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30137089
   |texte=   Cluster exchange reactivity of [2Fe-2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30137089" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020